
Introduction to Convex Neural Networks
Ahern Nelson, MSU Denver

Introduction
In a regression problem we have values x ∈ Rd

and y ∈ R, where x is a vector of variables and y
some value related to these variables. In this
context our goal is to "explain" the relationship
between x and y. We suppose that there exists
a function, f, relating x to y with some random
error. That is,
f(x) = y + ϵ, where ϵ is a random variable

How do we do This?
Given a sample of size n we specify a loss
function that evaluates how well an estimate of
f, f̂, fits the data. For example, for an
observation (x, y) the squared loss is defined by
Q(f̂(x), y) = (f̂(x) − y)2.
We wish to estimate the optimal function, f∗,
that minimizes the loss across all observations,
i.e.,

f∗ = argmin
f

n∑︁
i=1

(f(xi) − yi)2 (1)

Parametric Regression

Minimizing with respect to any function, f, is
vague. Instead, we specify f in a parametric
form, e.g., f(x) = ax2+ bx+ c and estimate the
unknown parameters, (a, b, c), that form f by
minimizing the cost with respect to the
parameters.

Linear Models
Linear Regression restricts the class models to functions that can be expressed as a linear combination
of the unknown parameters. For example, let x = (1, x1, ..., xd) represent the input variables and let
β = (β0, ..., βd). Then a function of the form f(x) = βTx =

∑︀d
i=0 xiβi can be appropriately estimated by

linear methods. However, this condition is potentially restrictive and could lead to severe under fitting
in high dimensions.

Single Hidden Layer Networks

Single Hidden Layer Neural Networks alleviate
this problem by filtering the parameters
through a non-linear transformation. In this
problem we specify a nonlinear activation
function σ, and an integer k representing the
number of hidden units.

When optimizing the cost function on a neural
network with respect to the parameters it is
unlikely, and often implausible, to find the
global minima.

...
...

X1

X2

Xd

H1

Hk

Y

w(1)1
w(2)1

w(d)1

η1

ηk

Input
layer

Hidden
layer

Output
layer

f(x) =
k∑︁
i=1

ηiHi(x) =
k∑︁
i=1

ηiσ(wT
i x) (2)

Convex Functions
A function is convex if for any values u, v the following holds:

f(λu+ (1− λ)v) ≤ λf(u) + (1− λ)f(v), forλ ∈ [0, 1] (3)

u

f(u)

λu+ (1− λ)v

f(λu+ (1− λ)v)

v

f(v)

f(u) + (1− λ) f(v)

Convex

Local Minima = Global Minima

u

f(u)

λu+ (1− λ)v

f(λu+ (1− λ)v)

v

f(v)

Not Convex

Potential For Many Local Minima

Convex Neural Networks
We can view the parameter estimation as a
convex optimization problem by tweaking our
perspective. LetH represent the space of
possible hidden unit functions, Hi. Informally
this can be thought of as the space of all
possible input weights wi. Consider a network, f,
that incorporates all ofH .
IfH is known then all we have to estimate is
the output weights, η, but the problem is there
are as many output weights as there are
elements ofH which may be of arbitrary size.
However, by using convex regularization tools a
finite solution may be obtained.

Regularization

We add a regularization term to the
minimization criteria. Regularization penalizes
large or complex parameter estimates. In this
case we choose a regularizer Ω that is convex in
η and promotes sparsity. That is, all but a finite
number of η are set to zero. In a sense the
number of hidden units is "chosen" in the
optimization.

Convexification
For a network, f, as described above, a loss Q
convex in the first argument, and a convex
regularization term Ω. Then the cost of f for a
sample of size n, is convex in the parameter η.

C(H ,Q,Ω, η) =
n∑︁
i=1

Q(f(xi), yi)+ λΩ(η) (4)

References
[1] P. Vincet O. Dellaleu P. Marcotte Y. Bengio, N. Roux.

Convex Neural Networks.
NIPS Proceedings, 18, 2005.

[2] F. Bach.
Breaking the Curse of Dmensionality with Convex
Neural Networks.
Journal of Machine Learning Research, 17, 2017.

1/1


